If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X-194=0
a = 1; b = 5; c = -194;
Δ = b2-4ac
Δ = 52-4·1·(-194)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{89}}{2*1}=\frac{-5-3\sqrt{89}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{89}}{2*1}=\frac{-5+3\sqrt{89}}{2} $
| .015x=38.64 | | 3^(2)-3x-6=0 | | 3x+6+2x=7x-4-2 | | 4y-y=11=38 | | 18m-10m+6=-42 | | 23=h-9=2 | | -3=y/13 | | 8=b-1=8b | | 8x-6-4=-6 | | -2x+18=x-24 | | 4v+-7=57-4v | | 126=2/3x | | 6p+50p=392 | | -7+8-50=x | | 3^x=363 | | 278=-2x | | 18.4c-14.7=-6.1c | | 11+q=13+4q | | C=6/5(k-8) | | -4(5n+6)=12 | | -3x+12=8x-9 | | -11q-20+11q=-2q+20 | | 12m+20=170 | | 4-69=9z+4z | | X+(0.072x)=333000 | | 62+8x=102 | | 8+5x=10+x | | 6w=7w+2 | | 1/18=k/150 | | 2(4x+3)-9=-2x-33 | | 2-17k=-16k-12 | | 4s-18=12 |